skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Abigail_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ferrocyanide, such as K4[Fe(CN)6], is one of the most popular cathode electrolyte (catholyte) materials in redox flow batteries. However, its chemical stability in alkaline redox flow batteries is debated. Mechanistic understandings at the molecular level are necessary to elucidate the cycling stability of K4[Fe(CN)6] and its oxidized state (K3[Fe(CN)6]) based electrolytes and guide their proper use in flow batteries for energy storage. Herein, a suite of battery tests and spectroscopic studies are presented to understand the chemical stability of K4[Fe(CN)6] and its charged state, K3[Fe(CN)6], at a variety of conditions. In a strong alkaline solution (pH 14), it is found that the balanced K4[Fe(CN)6]/K3[Fe(CN)6] half‐cell experiences a fast capacity decay under dark conditions. The studies reveal that the chemical reduction of K3[Fe(CN)6] by a graphite electrode leads to the charge imbalance in the half‐cell cycling and is the major cause of the observed capacity decay. In addition, at pH 14, K3[Fe(CN)6] undergoes a slow CN/OHexchange reaction. The dissociated CNligand can chemically reduce K3[Fe(CN)6] to K4[Fe(CN)6] and it is converted to cyanate (OCN) and further, decomposes into CO32‐and NH3. Ultimately, the irreversible chemical conversion of CNto OCNleads to the irreversible decomposition of K4/K3[Fe(CN)6] at pH 14. 
    more » « less